Copied to
clipboard

G = C3×C52⋊C3order 225 = 32·52

Direct product of C3 and C52⋊C3

direct product, metabelian, soluble, monomial, A-group

Aliases: C3×C52⋊C3, C52⋊C32, (C5×C15)⋊C3, SmallGroup(225,5)

Series: Derived Chief Lower central Upper central

C1C52 — C3×C52⋊C3
C1C52C52⋊C3 — C3×C52⋊C3
C52 — C3×C52⋊C3
C1C3

Generators and relations for C3×C52⋊C3
 G = < a,b,c,d | a3=b5=c5=d3=1, ab=ba, ac=ca, ad=da, bc=cb, dbd-1=b3c3, dcd-1=b-1c >

25C3
25C3
25C3
3C5
3C5
25C32
3C15
3C15

Smallest permutation representation of C3×C52⋊C3
On 45 points
Generators in S45
(1 15 6)(2 12 7)(3 13 8)(4 14 9)(5 11 10)(16 39 24)(17 40 25)(18 36 21)(19 37 22)(20 38 23)(26 42 31)(27 43 32)(28 44 33)(29 45 34)(30 41 35)
(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)(31 32 33 34 35)(36 37 38 39 40)(41 42 43 44 45)
(1 3 5 2 4)(6 8 10 7 9)(11 12 14 15 13)(16 18 20 17 19)(21 23 25 22 24)(26 30 29 28 27)(31 35 34 33 32)(36 38 40 37 39)(41 45 44 43 42)
(1 17 34)(2 18 33)(3 19 32)(4 20 31)(5 16 35)(6 25 45)(7 21 44)(8 22 43)(9 23 42)(10 24 41)(11 39 30)(12 36 28)(13 37 27)(14 38 26)(15 40 29)

G:=sub<Sym(45)| (1,15,6)(2,12,7)(3,13,8)(4,14,9)(5,11,10)(16,39,24)(17,40,25)(18,36,21)(19,37,22)(20,38,23)(26,42,31)(27,43,32)(28,44,33)(29,45,34)(30,41,35), (16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45), (1,3,5,2,4)(6,8,10,7,9)(11,12,14,15,13)(16,18,20,17,19)(21,23,25,22,24)(26,30,29,28,27)(31,35,34,33,32)(36,38,40,37,39)(41,45,44,43,42), (1,17,34)(2,18,33)(3,19,32)(4,20,31)(5,16,35)(6,25,45)(7,21,44)(8,22,43)(9,23,42)(10,24,41)(11,39,30)(12,36,28)(13,37,27)(14,38,26)(15,40,29)>;

G:=Group( (1,15,6)(2,12,7)(3,13,8)(4,14,9)(5,11,10)(16,39,24)(17,40,25)(18,36,21)(19,37,22)(20,38,23)(26,42,31)(27,43,32)(28,44,33)(29,45,34)(30,41,35), (16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45), (1,3,5,2,4)(6,8,10,7,9)(11,12,14,15,13)(16,18,20,17,19)(21,23,25,22,24)(26,30,29,28,27)(31,35,34,33,32)(36,38,40,37,39)(41,45,44,43,42), (1,17,34)(2,18,33)(3,19,32)(4,20,31)(5,16,35)(6,25,45)(7,21,44)(8,22,43)(9,23,42)(10,24,41)(11,39,30)(12,36,28)(13,37,27)(14,38,26)(15,40,29) );

G=PermutationGroup([[(1,15,6),(2,12,7),(3,13,8),(4,14,9),(5,11,10),(16,39,24),(17,40,25),(18,36,21),(19,37,22),(20,38,23),(26,42,31),(27,43,32),(28,44,33),(29,45,34),(30,41,35)], [(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30),(31,32,33,34,35),(36,37,38,39,40),(41,42,43,44,45)], [(1,3,5,2,4),(6,8,10,7,9),(11,12,14,15,13),(16,18,20,17,19),(21,23,25,22,24),(26,30,29,28,27),(31,35,34,33,32),(36,38,40,37,39),(41,45,44,43,42)], [(1,17,34),(2,18,33),(3,19,32),(4,20,31),(5,16,35),(6,25,45),(7,21,44),(8,22,43),(9,23,42),(10,24,41),(11,39,30),(12,36,28),(13,37,27),(14,38,26),(15,40,29)]])

C3×C52⋊C3 is a maximal subgroup of   C52⋊(C3⋊S3)  C5⋊D15⋊C3

33 conjugacy classes

class 1 3A3B3C···3H5A···5H15A···15P
order1333···35···515···15
size11125···253···33···3

33 irreducible representations

dim11133
type+
imageC1C3C3C52⋊C3C3×C52⋊C3
kernelC3×C52⋊C3C52⋊C3C5×C15C3C1
# reps162816

Matrix representation of C3×C52⋊C3 in GL4(𝔽31) generated by

25000
0100
0010
0001
,
1000
0400
0080
0001
,
1000
0800
0020
0002
,
1000
0010
0001
0100
G:=sub<GL(4,GF(31))| [25,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1],[1,0,0,0,0,4,0,0,0,0,8,0,0,0,0,1],[1,0,0,0,0,8,0,0,0,0,2,0,0,0,0,2],[1,0,0,0,0,0,0,1,0,1,0,0,0,0,1,0] >;

C3×C52⋊C3 in GAP, Magma, Sage, TeX

C_3\times C_5^2\rtimes C_3
% in TeX

G:=Group("C3xC5^2:C3");
// GroupNames label

G:=SmallGroup(225,5);
// by ID

G=gap.SmallGroup(225,5);
# by ID

G:=PCGroup([4,-3,-3,-5,5,1730,2739]);
// Polycyclic

G:=Group<a,b,c,d|a^3=b^5=c^5=d^3=1,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,d*b*d^-1=b^3*c^3,d*c*d^-1=b^-1*c>;
// generators/relations

Export

Subgroup lattice of C3×C52⋊C3 in TeX

׿
×
𝔽